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ABSTRACT

PARK, STEPHEN KENT. On the equivalence of optimal control problems and
the transformation of optimal control problems with compact control regions
into Lagrange problems. (Under the direction of HANS SAGAN.)

Several natural types of equivalence are defined for a set of optimi-
zation problems. Using these concepts of equivalence, a method is
described by which an optimal control problem with a compact control region
U can be transformed into an equivalent optimal control problem with an
(in general) arbitrary control region Z. This method assumes the existence
of a function V¥ which maps Z onto U and satisfies certain continuity
requirements. It is shown that when U 1is convex the existence of this
function is guaranteed and that when U is, in addition, a polyhedron
various representations for V¥ are given.

The particular case where Z 1is all of euclidean p-space, for some
positive integer p, 1s considered in some detail. It is shown that when
U 1is a convex body the optimal control problem is equivalent to (i.g., may
be transformed into) an optimal control problem in which the control functions
are unconstrained. Furthermore, when U d1s a polyhedron it is shown that
the optimal control problem is equivalent to a classical Lagrange problem.
This later result provides, as an application, a proof of the Pontryagin
maximum principle based upon known necessary conditions in the calculus of

variations.
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1. TINTRODUCTION

On page 218 of (22), L. C. Young expresses the following sentiment.
"We see that there is no real difference between the Lagrange problem and
optimal control; the latter is simply a more up-to-date formulation.
Apparent minor differences are sometimes pointed out, but they are really
quite insignificant." It is interesting to contrast this statement with the
one made by L. S. Pontryagin et al. on page 239 of (18) which reads
", . . the optimal control problem is a generalization of the problem of
Lagrange in the calculus of variations, and is equivalent to the latter in
the case where the control region U is an open set . . ." Regardless
of which of these two philosophies one chooses to adopt, when faced with an
optimal control problem with a (typically) closed and bounded control region
it is not at all clear, in most cases, what results from the calculus of
variations (if any) are applicable to the problem. As early as 1948,
M. R. Hestenes (8) used the calculus of variations to analyze an optimal
control system in which the control region was defined by a system of
inequalities. He used the method of "slack variables" - usually attributed
to F. A. Valentine (21) - and transformed the optimal control problem into a
Bolza problem. Since that time, this approach has been investigated by a
variety of authors and a large portion of the research is contalned in
Hestenes' book (9).

Herein we adopt a procedure for transforming optimal control problems

into calculus of variation problems which is similar in philosophy to

Hestenes', but which makes no use of slack variables. The procedure is



highly geometric in flavor and places an emphasis on the construction of
mappings from one control region onto another. Using these mappings, we
define a rather natural type of equivalence in the set of all optimal
control problems (of a certain type). As an immediate by-product we find
that it i1s possible to identify a large class of optimal control problems
which are, to within a transformation, Lagrange problems in the calculus
of variations.

The procedure mentioned in the previous paragraph may be illustrated
as follows. Consider the problem of optimally steering a control system
with the control function wu subject to the constraint wu(t)e U. Intui-
tively, one would believe that, at least 1f V¥ 1is continuous, one-to-one,
onto and has a continuous inverse, this problem is equivalent to the
problem of optimally steering the same system with a control function =z
subject to the constraint =z(t)e Z where u(t) = ¥(z(t)) and ¥ maps Z onto
U. This idea is very briefly mentioned on page 218 of (22) and Young
picturesquely concludes that "this corresponds to providing a new set of
dials =z, which are used to control the original dials u, as in regulating
a television get without getting up from one's arm chalr."

To be more specific, the basic problem with which we will be concerned
is the following one. Suppose an optimal control system is given in which
the control (vector) function is constrained to lie in a compact control
region contained in euclidean m~-space R". We seek to determine conditions
sufficient to guarantee that there exists a positive integer p, a subset 2
of Rp, and a function V¥ from Z onto U which together transform the

original control system into a new control system, with control region Z,



which is (in some sense) equivalent to the original. Having done this we
seek additional conditions which will permit us to choose Z = R’  and
thereby transform the original optimal control problem into an equivalent
Lagrange problem.

In chapter 2 we consider a very broad class of optimization problems
and discuss two concepts of equivalence in this class. In antici-
pation of investigating the questions mentioned in the previous paragraph,
we also define what is called, for lack of a better name, ¥-equivalence.
It turns out that W-equivalence is stronger than one of the previously
mentioned concepts of equivalence; namely, if an optimization problem P2
is W-equivalent to an optimization problem Pl then P2 and Pl are
equivalent. In the context of the previous paragrabh W-equivalence is a
very natural concept. For it turns out that if the original optimal
control problem, say Pl’ is transformed into a second problem P2 and if

P2 is WV-equivalent to P, then the following is true: if u:[to, tl] -U

1

is a (bounded, measurable) optimal control function for P, then there

exists at least one (bounded, measurable) optimal control function

z:[to, tl] —Z for P, such that u = Yoz (where o denotes function

2

composition); conversely if =z:[t t.] »Z is an optimal control for P
0’ "1 2

then u = Yoz is an optimal control for Pl' Therefore, we ask the

question, under what condltions is the transformed problem Pg‘@;equivalent

to the original problem Pl. Theorem 2.2 and corollary 2.1 give a complete

answer to this problem 1.e., necessary and sufficient conditions for P2

to be ¥.equivalent to P From these results we obtain corollary 2.2 which

1

serves as the basis of the investigation in chapter 3.



The principle result of chapter 3 is theorem 3.4 which relies heavily
on Fillppov's implicit function lemma (5) and corollary 2.2. The theorem
says that 1f there exists a positive integer p, a set ZcCRP, and
continuous function V¥:Z —» U which satisfies V(Z) = ¥(Z*¥) = U where

is W-equivalent to P,. It is a tribute to

Z*CZ 1s compact, then P 1

2
the strength of Filippov's lemma that theorem 3.4 remains true without any
reference to the structure of the sets W—l(u) where u € U (except,
of course, for the structure of W_l(u) induced by the continuity of V).
Specifically V is not by necessity one-to-one which illustrates that, in
the space of control functions, the normal (i.g., ¥ is a homeomorphism)
concept of a change in variables is definitely overly restrictive.

Chapter 4 is an application of theorem 3.4 with Z = rRP and Y
continuously differentiable. Specifically, we show that in many cases
there exists a Lagrange problem which is W-equivalent to the original
optimal control problem. In chapter 5 we use the results of chapter 4 to
explore further the relationships between the theory of optimal control
and the calculus of variations. The principle result here is that, using
the multiplier rule, Welerstrass conditlon, transversality conditions and
the concept of ﬁhequivalence,weareabletoobtain,forcertaincompactcontrol
regions U, a proof of the Pontryagin maximum principle. Since this proof
serves as an illustration of the material contained in chapters 2, 3, 4, and
6, it is by necessity not ideally organized. Certalnly if our sole objective
had been a proof of the maximum principle much of the material in each chapter

could have been eliminated and the remaining material reorganized.



Since the material of chapters 2 through 5 rests on the assumption that
a set 7 and an onto function V:Z — U exist, we turn to this question in
chapter 6. We show that when U 1s a convex body in R" then the hypotheses
of theorem 3.4 are satisfied. In the less general case where U is a
polyhedron we explicitly construct such a V¥ which is, in addition, continu-
ously differentiable with 2Z = rP. Finally in the simple case where U 1is
a parallelipiped we show that V¥ assumes a very simple form.

In the appendix we consider the question of local, as opposed to global,
P-equivalence. The discussion parallels chapter 2 and we obtain the local
analogues of theorem 2.2 and corollary 2.1. We close with a brief discussion
of an application of the transformation approach outlined herein to the
problem of minimizing a real valued function of n variables.

Since the idea of a change of variables in the space of control functions
is such an intuitive one, it is reasonable to assume that it has been
considered by others. This is, in fact, true for, as pointed out in chapter 6,
it is common practice (for example) to begin the statement of an optimal
control problem with a phrase such as "let the control region U bearight
parallelipiped and assume without loss of generality that U = [-1, l]m.”
This statement is based on the (implicit) fact that there is a (linear)
homeomorphism from [-1, l]m onto the right parallelipiped and the (implicit)
assumption that a change of variables induced by a homeomorphism preserves
equivalence. The idea of transforming an optimal control problem into a
Lagrange problem (in the manner outlined herein) is far less frequently
encountered. However, the idea is mentioned, for example, in (2) and (1h4)

and on pages 134-138 of (4). Typically these references use U = [-1, 1]



with 72 =R and V¥(z) = gin z (or the immediate generalization of this idea
to the case U = [-1, 1]™) coupled with the (implicit) assumption that the

transformed problem 1s equivalent to the original.



2. THE EQUIVALENCE OF OPTIMIZATION PROBLEMS

Let A be a suitable index set and suppose that for each N € A

there corresponds a set Y%, a nonempty subset Q%Cin, and a functional

FX:QX — R where R denotes the reals. Despite the fact that Qk

have no algebraic or topological structure one can still consider the

may

following global problem: to find an o° € QX such that Fx(ap) < Fx(a)

for all o € QX' Henceforth, for A € A, we will refer to this problem as

P\, refer to the elements of QX as admissible elements and refer to the
7

element o € 97\ (1f it exists) as a global optimal (admissible) element.

Furthermore, if a global optimal element (elements) exists for Py, we will

frequently refer to it (them) as a solution (solutions) although in the

case where no global optimal elements exist the term solution denotes, instead,
a proof of this fact. Finally, since we will always be concerned with global
(as opposed to local) properties we adopt the convention that in the absence
of a modifier such terms as optimal element, optimization problem and
equivalence should be understood in the global sense.l

The formulation of the preceding problem is sufficiently general to
guarantee that a wide variety of what could be loosely referred to as optimi-
zgtion or minimization problems are included in the set I = {P%: N EA }.
Specifically TI' contains the rather general optimal control problem to be

formudated in chapter 3 and the Lagrange problem to be formulated in chapter k4.

When discussing optimal control and/or Lagrange problems the notion of

lIn the appendix the material of this chapter is interpreted in terms
of a local problem.



equivalence of problems PX and PH for A, U € A 1s frequently
mentioned - in several different contexts. Unfortunately, these notions
of equivalence are often only vaguely (if at all) defined. Furthermore,
equivalence may not mean equivalence in the strict mathematical sense,

i.e., in the sense that PX and PM are eguivalent, written

PX = P“, if = 1is an equivalence relation on TI'. With this in mind

let us first define and then discuss the following equivalence concepts.

Definition 2.1: For X € A, let Q.°CQ

2\ \ denote the set of optimal

elements for problem P%.

Definition 2.2: For A, g € A 1if there exists a function ﬂ?:Qu -

A
such that F = Fo ¥ then
v) A

(1) P is strictly equivalent to P, if ¥ is one-to-one and
u = A

‘If(sz“) = 9

(2) PH V-equivalent to P

if \If(sz“) = Q

A A
(3) P“ is weakly W-equivalent to PK if ﬂ?(Quo) = QAO.
In other words Pu is strictly equivalent to Pk if ¥ is a one-to-one

correspondence between the admissible elements of Pu and PX’ P“ is

Utequivalent to P\ if ¥ maps the admissible elements for Pu onto the admissible

elements for PX’ P“ is weakly W¥-equivalent to P if ¥ maps the

A

optimal elements for PM onto the optimal elements for PX’ and in each

of these cases, corresponding admissible elements have the same functional

value. As an immediate consequence of this definition we have the following.
Remark 2.1: Strict equivalence 1s an equivalence relation in I,

Thus we have that the ordering of P, and Pu in the statement " Pu is

A



"

strictly equivalent to P is inconsequential. In contrast to this

A
situation we see that W-equivalence and weak W-equivalence do not

define equivalence relations on T. However, it is true that for \ € A,
PX 1s both ¥-equivalent and weakly W-equivalent toitself (¥ is the identity

on & Also the following is true.

A)'
Remark 2.2: For A, pu, v € A 1if PM is ¥ -equivalent (weakly) to
P% and Pv is & ~equivalent (weakly) to Pu then Pv is Wod-equivalent
(weak) to P% where o denotes function composition.
In other words the concepts of W-equivalent and weak iﬂ-equivalencé
define relations in T' which are reflexive and transitive but are not, in
general, symmetric. It is for this reason that throughout we will make a
careful distinction between the statement ”PX and P; are strictly
equivalent" and the weaker statements "Pu is W-equivalent (weakly WY-equivalent)
to PX" - 1n addition we will be careful to observe the order of terms Pu and
P in the later statements.

A
It is clear that strict equivalence is a stronger concept than

Y-equivalence. The following theorem says that conversely if P“ is
Y-equivalent to PX then there exists a "subproblem" Pv contained in Pu
which is strictly equivalent to P..

2\

Theorem 2.1: If Pu is W-equivalent to P% then there exists a

nonempty subset 0 C Q“ such that O and F = “lQ (i.e., the
1%

restriction of Fh to Qv) define a problem Pv which is strictly

equivalent %o PX'
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Proof: Since ‘@:Q“ - Q% is onto, for each «a € Q\, the set
@’l(q) is nonempty. Hence (by the axiom-of-choice) there exists a
function @:Qx-ékJ{Qfl(a):a € Q% } such that <D(@)€'@Pl(a) for each

ae€ i.e., ¥(P(a)) = a. Let e, = {@(0):a € 0 then by construction

N

Q C-Qu and Qv # ¢. Furthermore, the function ® is one-to-one since

li

U(d(a)) = ¥ ((a®)) = a®. Let F = F and
Y i 2,

o(a) = ®(«*) implies a

thereby define P,. If o€ Q% then ®(a)e 0, Qu and hence

I

F,(®(@) = F (2(a)) = F, (Ha(a)) = F,(a)

i.e., F o0 = FX' Since @ (QX) = @, the theorem is proved.
Let us turn to the concept of weak W-equivalence. TFollowing some
preliminary lemmas we obtain (theorem 2.2) an alternate characterization of
weak Veequivalence and as a corollary we obtain the expected result that
Ycequivalence is indeed stronger than weak W-equivalence. Hereafter let
us avoid reference to the general index set A and instead simply refer

to the optimization problems as Pl, P2 and so forth. Furthermore, in the

hypotheses_g{ the following three lemmas let P, be defined by i and Fp =

F_o ¥ where ¥:Q —an (¥ is not necessarily onto).

=1 —— 2
Lemma 2.1: If a € @, B €0, and ¥(B) = a then « € Qi implies
o

B € 92.
Proof: Consider B~ e Q, and a* = w(p¥)e @, . By hypothesis

Fl(a*) 2> Fl(a) and thus
Fo(8%) = F (¥(p%)) = F,(a¥) 2 Fi(a) = Fy (Up)) = ,(p)

which establishes the lemma.
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. O WOO -
Lemma 2.2: \11(92) 8y 1ff\11(92) o0

o
1

Proof: If Qi = ¢ the lemma is trivially true. Therefore assume
QE # ¢ and consider o € QE. If ‘II(QE) 3Q§ then there exists B° € o,
such that ¥(g°) = «®. From lemma 2.1 we have 8° e Qg and thus ‘I’(Qg) DQ;.

Conversely ‘II(QZ) DQ; implies \I’(Qg) DQ:(Z immediately since QEDQ;.

Lemma 2.5: Q) / § and ‘I’(Qg) CQ:(C iff Q__(i # ¢ ana ¥(a))N f £ 4.

Proof: If QC:’L # ¢ and \Ir(Qe)ﬂ Qi # ¢ then there exists an o’ € Q:(i

such that ¥ (%) = «°. From lemma 2.1 g° € Qg i.e., Qg 4 4.

then F,(B) = FE(BO). Letting o = U(B) then

and B° ¢ 2,

Furthermore, if B € a2

2

o o . o ) C . o
Fl(q,) = FE(B) = F2<B ) = Fl(oo ). Since a € 0, this implies o € 0, and

thus \If(Qg)C Q;. Conversely, if Qg # ¢ and \II(QS)C Q:ci then there exists
8° € Qg and thus a° =¥(p°)e Qi. Therefore, \I'(Qg) N Qi # ¢ which implies

o]
() N ol £ ¢.
Combining lemmas 2.2 and 2.3 we obtain the following theorem which gives

a necessary and sufficient condition for P2 to be weakly W-equivalent to Pl'

Theorem 2.2: Suppose Qi) 74 ¢ P2 is weakly W¥-equivalent to Pl
iff \Ir(Qg) DQE. If instead Qi = ¢ then P, 1is weakly V.equivalent to P,
. 0
irf Q5 = ¢.
Proof: If Q; = ¢ the theorem follows as a restatement of definition 2.2,
If Qi # @ and P2 is weakly W-equivalent to Pl then \II(QZ) = Q:(E i.e.,

W(0,)20° since 9,20°. Conversely, if Q;%¢ and \II(QE) 50° then from

2) 1 2° 2 1

lemma 2.2 \If(fzg) Dszi. Furthermore, Q:(E # ¢ implies ¥(0,) N Qg 4 ¢ and

thus from lemma 2.3 \II(QZ)C Qi i.e., P2 is weakly WV-equivalent to Pl'
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Corollary 2.1: 1If P2 is WY-equivalent to Pl then P2 is weakly
Y.equivalent to P .
0 . . o}
Proof: If Ql # ¢ then theorem 2.2 applies since QlCin. If

Ql = ¢ suppose there exists BO € Qg and let o = @(BO), Consider

a € Ql then by hypothesis there exists B8 €

Fo(B) 2 F (B

, such that ¥(B) = @. Since

®)  this implies Fl(a) > Fl(ao) and since a was arbitrary it

o}

follows that o € 97, This contradiction establishes Qg = ¢ and from

1

theorem 2.2, P, 1s weakly W-equivalent to P

2 1’

As mentioned in the introduction our primary interest herein will be
concerned (in general) with transforming a given optimal control problem
(Pl) into a second problem,(Pg) which is in some sense equivalent to the
former. Before considering this question in detail let us consider one -

final concept of equivalence.

Definition 2.3: Problems P and P will be said to be equivalent if

1 2
there exist functions '@igzﬂl - @, and '@él:Qg -9, which satisfy
F, = F° \Ifg:L and F, = F,° \Lm.

Notice that this does, in fact, define an equivalence relation on T.
Furthermore, 1f Pl and P2 are strictly equivalent (129') there exists a

one-to-one, onto function ‘@:QE —aﬂl satisfying Fé = Fi(oﬁq then using

_ I a _1
‘@él = ¥ and iblg = we have Fl = Fé o\ and P

That is, strict equivalence is stronger than equivalence. As we observed

12 P2 are equivalent.
previously, W-equivalence is not an equivalence relation on I’ but in the
sense of theorem 2.1, W-equivalence i1s "almost" strict equivalence. From

the proof of theorem 2.1 we cobtain the following result.
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Theorem 2.3: If P,

, 1s W-equivalent to P, then P, and P,
.

1 1
are equivalent (in the sense of definition 2.3).

Proof: Referring to the proof of theorem 2.1 (with 1 =12, 2 =, 3 = v) we
see that Q}:Qe—aﬂl and @:Ql—>Q5<iQ2 satisly the conditions of definition 2.3,

With regard to the previously mentioned problem of, given Pl,constructing

a problem P2 which is in some sense equivalent to P, the procedure which

1

ve will pursue is clear. Starting with Pl, we construct a set Q2 and a

function YP:QE —an. If we define F2:Q2 - R as F2 = Fi o W and if the

function ¥ is onto, i.g.,iﬁ(ﬂ Q, then P, is V-equivalent to P

o) = 9 )

19 P2 are equivalent. Of more importance is the fact that P2

1

and hence P

is weakly W-equivalent to P and as a consequence the following 1s true:

1

if Qi = ¢ then Qg = @, if Qi # @ then for each o’e QE there exists at least one
o

p° € @) such that ¥ (°) = a°j finally ir B° € 02 then W(p°)e @

o]
1

0 .
5 i.e.,

ﬂ?(BO) is an optimal element for P Thus, if we analyze P, we have, to

1° 2

within a transformation (namely ﬂ?:Qe —an), at the same time analyzed Pl'
Since we will refer to this idea repeatedly, we record the previous discussion
as the FUNDAMENTAL CONSTRUCTION LEMMA which is the following.

Corollary 2.2: If there exists a set YE’ a nonempty set QQCY2 and

a function ¥:0, - with ¥ onto (i.e., ¥(q,) = Q,) then (Y, &, F

1 2)

define a problem P, which is W-equivalent to P, where F, = Fl<>ﬂh

It is this corollary that will be the basis of the discussion in

chapters 3 and k4,



1k
%, W-EQUIVALENCE IN A CLASS OF OPTIMAL CONTROL PROBLEMS

The discussion in thisg chapter will be based upon the abstract theory
of W-equivalence developed in chapter 2. Specifically, we will be concerned
with corollary 2.2 and its application to the theory of optimal control.

To avoid lengthy introductory remarks we adopt the convention that, unless
explicitly stated otherwise, the terminology and notational conventions of
Pontryagin et al. (18) will be used throughout. (Although with regard to
vector notation, we follow a convention opposite to theirs concerning

subscripts and superscripts.)

3.1 The Formulation of Problem Pl
For any positive integer r let R" denote euclidean r-space and let
n and m be fixed positive integers. Suppose that the phase space X 1is

all of R° and that an initial point a and nonempty target set S are

given in X along with an initial time to € R. 1In addition let the control
region U Dbe a nonempty subset of R". We assume that § is closed, a ¢ S,
and U 1s compact (i.g., closed and bounded). Finally, we assume the real
valued functions 8; and %%? are defined and continuous on X xU for
i=0,1,2, ..., n and j=1,2, ..., n and we let g = (gl, cees gn).
The optimal control problem designated Pl will be formulated in terms of

the quantities mentioned in thls paragraph. In anticipation of this, define

the following:

Definition 2.1: ¥, = {u.z (ul, ceey um): u is measurable and

u:[to, ty] - U for some t, > to }
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We remark that measurable and integrable are meant in the Lebesgue
sense and that a vector function is measurable (integrable) if each of
its components is measurable (integrable). Furthermore, since U 1is
bounded 1t follows that if u € Yl
The following lemma is a standard result in analysis (see, e.g., (19)

then u 1is integrable.

page 39), but since it will be used repeatedly we choose to label it lemma 3.1
to facilitate later reference to its contents.

Lemma 3.1: If atA »R' 1is continuous for @ # ACR’ and positive
integers v, p then for each bounded, measurable function B:[to, tl]—eAV the
function aoB:[tO, tl] >R is integrable.

Returning to the optimal control problem let us define some standard
terminology.

Definition 3.2: If corresponding to a finite tl > to and function

u:[to, tl] —>U 1n Y, there exists an absolutely continuous function

1
x:[to, tl] - X such that x(t) = g(x(t), u(t)) a.e. on [ty tl], x(to) = a

and x(tl)e S then u 1is an admissible control (function), x 1is an

admissible trajectory, and tl is a terminal time.

Since it requires x(tl)e S, this definition of an admissible control

is stronger than the one given by Pontryagin et al. However (as observed by
many authors), a control which does not ultimately steer the trajectory to
the target set cannot be an optimal control and thus there seems to be little
value in considering a control which is not admissible in the sense of
definition 3.2 for some tl > to. With regard to definition 3.2 the next

lemma says that the admissible trajectory associated with an admissible
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control 1s unique and that without loss of generality we may take tl as

the least terminal time. The uniqueness of the trajectory is a standard
result in the theory of differential equations (see (18), p. 78) and thus
we only concern ourselves with a proof that there exists a tl > tO such
that x(tj)e S and t e[t t)) implies x(t)¢ S.

Lemma 3.2: If u:[to, ty] 2 U is an admissible control and x:[to, ty]o X

is an assoclated admissible trajectory then t, = inf { T > tO:X(T)e S } >t

is & terminal time and x restricted to [tO, tl] is unique.

Proof: Let T = {72 t;:x(1)e 5} then t, € T and thus

tl =4inf T 2 to exists. By definition there exists a sequence (Tn) —atl

with T, € T, i.e., x(Tn)e S and T > tO. Furthermore, x 1s continuous
. . . . < <

on [to, t*] and in particular is continuous at tl since to > tl >ty

Therefore (x(7,)) —ax(tl) and since S 1is closed it follows that

is a (least) terminal time. Finally, if +t. = t. then

x(t))es i.e., t o=t

1
x(tl) = x(to) = a which contradicts the assumption a ¢ S. Thus ty <ty
Lemma 3.3: If u 1is an admissible control with the corresponding

(unique) admissible trajectory x and (least) terminal time t, ‘then

t
1
() = [ T g (x(n), u(n) ar
t
0]
exists.
Proof: Since x and u arebounded,measurable<n1[to, tl] and since gg

continuous on XxU, the existence of Fl(u) follows from lemms 3.1.

is
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In other words, lemma 5.5 serves to define a functional Fl on the
set of admissible control functions. In agreement with the notation of
chapter 2 we make the following definition:

Definition 3.3%: Let QlCZYl denote the set of admissible control

functions. We will sometimes write, for brevity, (u; x, tl)e N
if u e Ql, X 1is the associated trajectory, and t, 1s the
terminal time.

In passing we note that it may seem more consistent with the notation
of chapter 2 to define Ql as {a:a = (u, x, tl)} where u 1is an admissible
trajectory, x is the assoclated trajectory, and +t., 1is the terminal time.

1

However, since x and t, are unique (for each u) this is unnecessary and

1

in fact is undesirable since it would require us to adopt some clumsy conven-

tions concerning the construction of Yl. Therefore we use the definition
of Ql given by definition 3.3 and yield to the previous discussion by
occasionally vwriting (u; x, tl)e o, .

The usual purpose of optimal control theory is not to determine whether
or not Ql is empty, but rather, given Ql # ¢, to find a minimal element

of & Therefore we assume Ql % ¢ and state the following.

1

Definition 3.4: Problem P, is: find a u° € Q. such that

1 1

Fl(uo) < Fl(u) for all w € @ . If an optimal element (u°; x°, tol) exists

for Pl we call u° an optimal control (function) and x°  the assoclated

optimal trajectory. Finally, we denote the set of optimal control functions
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3.2 The Construction of Problem P2
Consistent with the discussion in chapter 2 we have defined Pl and
now we make the following basic assumption which we assume is satisfied
throughout the remainder of this chapter. A later chapter (chapter 6) is
devoted to the question of the existence and explicit construction of a
set 7 and function V¥ satisfying the basic assumption for particular
cholces of the set U.

Basic assumption: there exists the following

(1) a positive integer bp,
(2) a nonempty set 7.cRY (perhaps 7 = RY),
(3) and a continuous function V:Z —»U with ¥(Z) = U, l.e., ¥
is onto.
It will be this set 27 and function V¥ which will serve as a basis
for the construction of a set QE’ a function @9:92 - Ql and problem P2
which is W-equivalent to P .

Definition 3.5: For (x, z)€ XxZ define f, and ¥ = (fl, cees fn) as

£,(x, 2) = g,(x, ¥(2)

where 1 =0, 1, 2, ..., n.

The following lemma is an immediate consequence of the properties of 8
and the continuity of V.

Lemms, 3.4: The real functions fi and g;% are defined and continuous
on XxZ for i=0,1,2, ..., n and Jj =1, %, eesy T

The functions f. and f = (fl, oeey fn) satisfy the same hypotheses

0]

as g, and g. Thus in terms of (a, to), X, S and Z we can obtain the
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following results and definitions by formally replacing gy by fi and U
by Z 1in the previous discussion. It is important to note that we have
not assumed Z to be bounded and as a consequence some changes must be made.

Remark 3.1: Y. = {z = (Zl’ ey Z

o ) : z 1is bounded, measurable

and z:[to, ty] =% for some +t, > t }.
Remark 5.2: An admissible control z:[to, tl] -7, admissible trajectory

x:[to, tl] — X and terminal time t are defined analogous to definition 2.2

1
with the understanding that 2z 1is bounded with %(t) = f(x(t), z(t)) a.e. on
[to, tl].

With this understanding that =z be bounded, the analogue of lemms 3.2
remains true (see (18), p. 78) so that corresponding to an admissible control

z, the associated trajectory x i1s unique and again we take tl as the

least terminal time. Furthermore, we sometimes write (z; x, tl)e 92 where:
Remark 3.3: 92 denotes the set of (bounded) admissible control functions.
As the analogue of lemma 3.3 we have the following lemma which defines

the functional F on {

2 2°

Lemma 3.5: 1If (z; x, tl)e @, then

t
T, (z) =ft Y (x(r), 2(7)) ar
0

exists.

Proof: From lemma 3.4 F

0 is continuous on X xZ and again since x and

z arebounded, measurable lemma 3.5 follows from lemma 3.1.
While it may not be clear that 92 # ¢ we will show later that under the
assumptions made so far this is indeed true. With this in mind, we make the

following remark.
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Remark 3.4: Problem P, 1is: find a z° € Q, such that F(2°) < Fy(2)

2 2
for all z € 9,. If (z°; x°, t°

2 1) °

is an optimal element for Pg then 2z
and x° are called an optimal control and optimal trajectory, respectively.
The set of optimal control functions is designated Qg.

Following the program of chapter 2 we will show that P2 as constructed
is W-equivalent to Pl for an appropriate function '@192 —an. As one
would expect, the function W, which maps a function z to a function u 1is
determined by applying the function V¥ at each point z(t). This idea is
explicitly defined (definition 3,7) later but first some preliminary work is
necessary.

Remark 3.5: If (z; x, tl)e Q2 and the bounded function z*:[to, tl] -7
satisfies z = z' a.e. then (z; x, tl)e 0, and Fe(z) = FE(Z*)’ An analogous
statement is true in Ql.

Remark 3.5 is an immediate consequence of the definition of an admissible
trajectory and terminal time. It is merely an expression of the intuitive
idea that changing a control function on a set of measure zero produces no
effect on the trajectory and functional value. For this reason one can avoid
distinguishing between two admissible controls which agree except on a set of
measure Zzero.

The following ﬁwo theorems express the fact that if the admissible controls
z (for Pg) and u (for Pl) are related by Voz = u then they produce the
same admissible trajectory, terminal time, and functional value (i.e.,

Fg(z) = Fl(u)). Thus, in a generalized sense, P, 1is Py with a change of
variables in the space of admissible controls. We will return to a dlscussion

of this statement following theorem 35.35.
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Theorem 3.1: If 2z is an admissible control (for P,) with admissible

5)

trajectory x and terminal time tl then u = VYoz 1s an admissible control

(for P Furthermore, x is the (unique) trajectory and t, the (least)

1)

terminal time associated with u and Fl(u) = FQ(Z)'

Proof: From lemma 3.1 the function u = Woz:[to, tl] -»U 1is
measurable. By hypothesis x(t) = f(x(t), z(t)) a.e. on [tg, t]. Since
£(x(t), 2(t)) = a(x(t), ¥(z(t)))= g(x(t), u(t)) and since x(t;) = a,

x(t,)e 8 it follows that x:[t, tl] —-X is the (unique) admissible

1

trajectory for u. Furthermore, tl is the least terminal time for u -

for if not then x(t)e S for some t e[to, tl) which contradicts the fact
that tl is the least terminal time for z. Therefore (u; X, tl)e Ql.
Finally,

Fg(z)

t
Jﬁ 1 (x(7), z(T)) dr
tO 0

t
:\/“ b ogg(x(7),¥(2(7))) ar
g

i

Gl

[ g(n), w(m) ar
t
0

= Ty (u).

Theorem 3.2: If (u; x, tl)e Ql and if there exists a bounded measurable

function z:[to, tl] — 7 such that Voz = u then (z;x, tl)e Q, and

F2(z) = Fl(u).



22

Proof: As in theorem 3.1 we obtain x(t) = g(x(t), u(t)) = £(x(t), z(t))

a.e. and as before we can argue that (z; x, tl)e Qg' Similarly, we obtain

Although it is not needed an even stronger result than theorems 5.1 and
3.2 follows from the same type of argument, the definition of the least

terminal time and the uniqueness of the trajectories.

Corollary 3.1: If (u; x, t.)€ O, and (z; x*, t¥)e Q. and if

1 1

1

2
u(t) = ¥(z(t)) on [t5, 7] for T = min {t;, t¥ } then ty = t], x = x*, and

Fl(u) = FE(Z).

3.3 P2 is WP-Equivalent to Pl
As indicated by theorem BJEandpointedoutjl1chapterJ‘thekeyresultwhich

enables us to prove P2 is W¥-equivalent to Pl is Filippov's implicit function

lemma - a lemma which (for several reasons) is of fundamental importance in the theory of

optimal control. With thig lemms in mind we make the following definition.

Definition 3.6: The system (¥, Z, U, R) satisfies the measurable TFP

(implicit function property) if for each interval [to, tl]ciR and (bounded)
measurable function u:[to, tl] — U there exists a bounded, measurable
function z:[tO, tl] — 7 such that u = Voz,

With regard to the statement made prior to remark 3.4 we have the
following.

Corollary 3.2: If (¥, Z, U, R) satisfies the measurable TFP then
9 ¢ §.

Proocf: By assumption Ql % ¢ and thus there exists a (u; x, t

e Q

1 1°

By hypothesis there exists a bounded measurable function Z:[to, tl] -7

such that Yoz = u and from theorem 3.2 (z; x, t)e .



25

Prior to remark 3.5 there was some discussion concerning the construc-

tion of a function ‘I’:Q2 —an. We formally do this now, noting that

theorem 3.1 justifies the definition.

be defined as ¥(z) = u if u = Voz.

Definition 3.7: Let ‘@&92 —aﬂl

Corollary 3.%: If (¥, Z, U, R) satisfies the measurable IFP then W

maps §, onto & (iﬂg.,iﬁ(ﬂg) = Ql)

Proof: That W is onto follows immediately from the arguments of

»and in addition F, = F° v,

corollary 3.2. Furthermore, if 1z € Q2 then from theorem 3.1
Fg(z) = Fi(Woz) = Fl(u) (i.e., F, = FlO‘@).

Combining corollaries 3.2 and 3.3 and interpreting corollary 2.2 in
terms of the notation of this chapter produces theorem 3.3.

Theorem 3.%: If (¥, Z, U, R) satisfies the measurable IFP then P,

is W-equivalent to P In particular, the following statement and its

1
. o .0 ,0 o] .

converse are true: for each optimal element (u ; x , t l)e 27, there exists

an optimal element (zO; ;?tgi)e 902 with Wozo = u’. Furthermore,

o _ Yo o _ ~o oy _ 0

Bty X=X and Fl(u ) = F2(z ).

3.4 Filippov's Lemma
Definition 3.6 can be stated diagrammatically in the following form.
The system (¥, Z, U, R) satisfies the measurable IFP if there exists a bounded,

measurable function =z which completes the diagram

measurable 7
7 Ve

bounded u (measurable)

s

Z;( s)

¥ (onto, continuous)

Figure 3.1- Commutative diagram.
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If Z 1is compact and 1f V¥ 1is one-to-one then V¥ is a homeomorphism
(i.e., W"l exists and is continuous). In this case, given u, we have
z = W—lou which by lemma 3.1 is measurable and bounded and hence (¥, Z, U, R)
satisfies the measurable IFP. It is this case, with the additional assumption
that V¥ be Cl, which would normally be considered in a change of variables
discussion. However, Filippov's lemma shows that these assumptions are far
more restrictive than necessary.

Rather than prove Filippov's lemma completely, we refer the reader to
the original paper (5) pages 78-79, or to an identical proof on pages 30-31
of (7). Since we will make a later comment concerning the construction of
the function =z we discuss this aspect of the lemma. If KcrRP is a
nonempty compact set, then the continuous function a;:K - R where
ceey zp)) has a minimum on K 1.e., there exists
at least one point of K whose ith component is least. Thus by applying
oy to K we determine an element zl whose first component is least.
If there is more than one such element, we apply %y to the compact set
Kfﬁal (al(zl))'ﬂxmebydeterminingfromamongthesetofelementswhosefirst
component is least, an element whose second component is least. Again, if
there is more than one such element we continue inductively for
i=1, 2, ..., p and in this manner uniquely determine a point in K.

Lemma 3.6 (Filippov): Under the conditions of the basic assumption,
namely that U is compact, and V¥ 1is continuous with V(Z) = U and with

the additional assumption that Z 1is compact, the system (V, Z, U, R)

satisfies the measurable IFP.
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Proof: ILet u:[to, tl} - U be a measurable function and for each
t e[to, t;] let K(t) = W-l(u(t)). Since K(t)C Z and since V¥ is
continuous the set K(t) 1is compact and nonempty (¥ is onto). Let z(t)
be the unique element of K(t) determined as in the previous discussion
and in this manner we define a bounded function z:[to, tl] — Z such that
Yoz = u. A proof that 2z is measurable is based on Luzin's theorem and is
contained in the previously mentioned references.

Theoren %.3 and lemma 3.6 together state that the basic assumption plus
the compactness of Z are sufficient for W¥-equivalence. Frequently (as in
chapter 4) it is desirable to remove the compactness assumption on 7Z and
one way of doing this is by strengthening the assumptions on V. Doing this
one obtains the fundamental result of chapter 3 which is the following.

Theorem 3.4: If the conditions of the basic assumption hold (Z need
not be compact) and if in addition there exists a compact set Z*C Z such
is W-equivalent to P,. Furthermore, if

2 1

then there exists a measurable function z*:[to, tl]->Z* with

*
that V¥ maps 2 onto U then P

(z; x, ty)e€ 0,

(2% %, t))e 0, such that Voz = Yoz* and Fp(z) = F,(2*). Finally, if
(z; x, tl)e Qg (i.e., z 1is an optimal control) then (z¥*; x, tl)e Qg.

Proof: By lemma 3.6 the system (WIZ*, Z*, U, R)} satisfies the measurable
IFP so that (¥, Z, U, R) does also since Z*C Z. TFrom theorem 3.5 it follows

that P, 1is W-equivalent to P

1
1 » then (u; x, tl)e Q, where u = Voz. Since

(WIZ*, Z*, U, R) satisfies the measurable IFP there exists a (bounded) measurable

2

Now if (z; x, t,)e &

function z*:[to, tl] 7 with Voz" = u. From theorem 3.2 (z*; X, tl)e 2

LThe function ¥|,* demotes the restriction of ¥:Z U to v¥c 7,
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and Fg(z*) = Fl(u) = FE(Z). That the functions Voz and Voz are equal

follows since both are equal to u. Finally, if (z; x, tl)e QOE then since

o]
2

Paraphrasing the results of the previous theorem, one finds that, under

FQ(Z) = Fz(z*) we have (z*; x, tl)e Q. and theorem 3.4t is established.

the hypothesis of theorem 3.4, P2 is: ¥-equivalent to. P; . but without loss

1

of generality one can select the optimal controls for P, (if any exist)

2
from among the set of (bounded) measurable functions whose range is contained
in Z*.

Before closing this chapter, some observations are appropriate.. First,
if the hypotheses of theorem 3.4 are satisfied with Z = R’ then Pl has
been. transformed into a problem P2 whose. control region is.the whole space
Rp. As is illustrated in chapter 4, this provides a bridge between the
calculus of variations and the theory of optimal control 1i.e., a direct
method: is available for relating the results of the calculus of variation,
(e.g., sufficiency theorems, Hamilton-Jacobi theory. and, of course, necessary
conditions) to problems of optimal control. In additibn, since many numerical
algorithms are based on the (implicit or explicit) assumption that the
control region is open, this provides a method of applylng these algorithms
in the.case where U .is- compact.

Second, as indicated in (6), there may be some advantage to replacing
a problem whose control region has corners by one whose control region is
smooth (in some sense). From theorem 3.3 (or 3.4 with 2z = Z*) if we may

choose Z as, for example, the closed unit ball in R® this goal is

accomplished. We will say more about this in chapter 6.
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Third, Filippov's lemma recently has been the subject of research, see
for example (12), (16). Particularly the paper of McShane and Warfield (16)
generallzes the lemma to include the case where 7 is a separable metric
space, U 1is a Hausdorff space, and [to, tl] becomes a subset of a measure
space. Thus, in our case, it appears that we could relax the hypotheses
of theorems 3.3 and 3.4. However, since the original version (5) will prove
to be completely adequate for use herein, and since the compactness of Z
(or Z*) permits an easy visualization of the construction of z:[to, tl] -7
we choose to use Filippov's lemma in its original form. In fact, lemma 3.6
is actually less general than the original and is an immediate corollary of
it. We remark that the original was intended for use in an existence theorem
and that its application herein serves to underscore the fundamental role
this lemma plays in the theory of optimal control. (See the discussion on
pages 293-297 of (22)).

Finally, loosely speaking, all of what was done in this chapter could
be interpreted in terms of piecewise continuocus (as opposed to bounded,
measurable) controls. However, to do this it would be necessary to obtain
the piecewise continuous analogue of Filippov's lemma (i.g., if u is
piecewise continuous under what additional assumptions (if any) on U, %,

and V¥ can we assume that 2z is piecewise continuous) .
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L. LAGRANGE PROBLEMS AS OPTIMAL CONTROL PROBLEMS

On several occasions in chapter 3 it was mentioned that we would be
interested in transforming a problem Pl, with a compact control region,
into a problem P2 with RP as its control region. This is the idea which
will be pursued in this chapter and with this in mind, let us strengthen the
basic assﬁmption of chapter 3 to read: +the set Z is all of Rp and there
exists a compact subset 7%C 7 such that ¥ maps Z* onto U where U
is compact and connected. We remark that since Z = R’ is connected and
¥(Z) = U, then by necessity we must assume U 1is connected. This set of

assumptions will be referred to as the strengthened basic assumption.

Remark 4.1: If the strengthened basic assumption is satisfied then
theorem 3.4 applies.

In chapter 6 we show that for certain types of compact, connected sets
U it is possible to find a positive integer p, continuous function V¥, and
compact set z* which satisfy the strengthened basic assumption. These
results combined with remark 4.1 (i.e., theorem 3.4) verify that for a rather
arbitrary control region U we may transform Pl into a problem P2 which
is Y-equivalent to Pl and which has an unconstrained control region. While
in many instances this may be adequate, 1f one wants to cast problem P2 into
the traditional framework of the calculus of variations some additional
agsumptions are necessary. We list these in the following paragraph.

Throughout the remainder of this chapter assume that the strengthened

basic assumption is satisfied and that in addition the function V¢ 1is C:L

D

on Z = R . Furthermore, suppose there exists an open set VCIRm with UCYV
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such that the functions gy and g = (g, --- gn) are CT on XxV. With

these additional assumptions the following is true.

Lemma 4%.1: The functions f, and f = (£
1

are C° on XxZ (i.e., on Rn+p)’

12 .y fn) (definition 3.5)

For convenience let us restate problem P2 in the form it will assume
throughout the remainder of this chapter.

Problem P5: To find a bounded, measurable control function

z° = (zi, vees zop) with z°(t)e 7 = R®, a corresponding (unique) absolutely

continuous trajectory x° = (xol, ceey xon) and a (first) terminal time

t >t such that

o}

(3) x°(t) = f(xol(t), veey x (t), 2 l(t), cen, zop(t)) a.e. on [t,, tol]

t

° tol) minimizes Fg(z) :\/ﬁ 1 fo(x(T), z(T))dT with respect
t

0

to all function x, z and terminal times tl satisfying these conditions.

and such that (z°; x

Since XxZ = R™P and since the functions £, T are ¢t on xxz
it is well known (see (18), chapter V) that P, 1is '"equivalent" to a certain
Lagrange problem in the calculus of variations. We show herein that this
Lagrange problem is in fact W-equivalent to Pg. Since one of the primary
objectives of this paper is to illustrate how one can transform an optimal
control problem into a calcuwlus of variation problem - thereby correlating
known results in the two fields - we will go into some detail in the following

discussion.
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For arbitrary vectors vy = (yl, ceny yn+p> and y = (&l, ceey §n+p)in RAFTP

define functions

v Vo)

ei(}’; y) = fi(yl’ cesy yn: Y n+p

n+l’

I

for 1=0,1,2, ..., n and

@i(yJ i) = &i = ei(y) &)

for i=1,2, ..., n,

(Later we will introduce a function y and its derivative § which are

not to be confused with the arbitrary vectors y and ¥y used here.)

next remark follows immediately.

Remark 4.2: The functions 8ys 6 = (el, vee; 0 ) and @ = ($l,

are Cl on Rn+p)<Rn+p.

cos D)

In terms of the functions 6 and @ let us define a Lagrange problem

0]

and then prove that it is W¥-equivalent to P,

Lagrange problem considered in this paper, it will be referred to as the

Lagrange problem or sometimes as problem P

3

of chapter 2 and the terminology of the calculus of variations let Y

the set of all absolutely continuous functions y = (yl,

[ty ty] »R"® for some +t, > t, such that

o’ 0]

t
y(t) =k/D w(T) dt + yo
tO

Since this is the only

Consistent with the notation

o5 Ynup

denote



31

for an arbitrary vector We Rn+p

o

and bounded, measurable function
+
w:[to, tyl - RYP, By convention we agree to call the function w the

derivative of y and in this way extend: the definition of & to all. of

jon

{tO, tyl i.e., if y € Y, then d_ y -exists a.e. and & = a.e. for

3 at &

a bounded measurable function w:[to, tyl SRTP with w = Ve

Definition 4.1: If corresponding to tl > tO there exists a function

y:ltys ] SRTP qn Y, such that

0 = o(y(t), y(t))

a.e.,

Y(to) = (al, ooy an, O, EEE) O)

and
y(t)e sxRP

then y 1is said to be an admissible arc and tl is a terminal time.

As. in lemma 3.2 we can assume without loss of generality that tl is
the least terminal time and, as in lemma 3.5, that the functional
, tl
r(r) = [ T ey, ¥(n) ar
t
0
is defined for each admissible arc. Let QBCY5 denote the set of admissible
arcs so- that F5 is a functional on Q3 and problem P3 becomes; - find a
yoe Q5 such that Fi(yo) < FB(y) for all y € QB. If such a y° exists

we call-itra minimal admissible arc.and we let QOB denote the set of all

such arcs. As noted in.chapter 2, P is.a global problem and since much of

b

the calculus of variations is concerned with local (as opposed to global)

minimal arcs the global nature.of: P should be kept in mind to avoid possible

5

confusion.
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It y e 95 with terminal time tl define functions X:[to, t1] — R

and z:[tO, tlJ - RP by x, =y, for i=1,2, ..., n and 2z, =y

i i i n+i

for 1 =1,2, ..., p. Since o(y(t), y(t)) = 0 a.e. it follows from the

definition of o that x(t) = f(x(t), z(t)) a.e. and that (z; x, t )e Q

1 2°

Also from the definition of O, we have FB(y) = Fg(z). Conversely starting

with (23 x, t)e O, the function y:[tg, ] - R*P  defined by

1

for i=1,2, ..., n and

for i=1,2, ..., p

is in QB. Since 92 # @ we have 95 # ¢ and in addition the following

lemma is true.

Lemma 4.2: The function ¥ defined by W¥(y) = z where y; = x; for

i=1,2, ..., n and yn+i =zy for 1=1,2, ..., p maps 95 onto Q2 and
F, = FEOW.

Therefore, in the terminology of this chapter, corollary 2.2 becomes
the following.

Theorem 4.1: The Lagrange problem.(P5) is QLequivalentl to P In

X
particular, the following statement and its converse are true: for each

minimal admissible arc yo and terminal time tl there exists an optimal

control ZO, optimal trajectory x® and terminal time t*l. Furthermore,

lInfact ¥ is one-to-one and hence Po, P3 are strictly equivalent in the

sense of definition 2.2.
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these quantities are relatled by yoi = xoi for 1 =1,2, ..., n
v .=z for i=1,2, ..., p and t, =t

Remark 4.2: From remark 2.2, the Lagrange problem is QEOQE—equivalent
to Pl where ﬂﬁ is defined in definition 3.7 and @b is defined in
lemma 4.2,

In chapter 5 we will derive the (Pontryagin) maximum principle for P2
using the necessary conditions of the calculus of variations and theorem 4.1.
From this we obtain the maximum principle for Pl using theorem 3.%. We

remark that as a consequence of remark 4.2 we could skip the intermediate

step (Pg) - however, we choose not to do this.
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5. AN APPLICATION OF YLEQUIVALENCE

In this chapter we will apply the necessary conditions of the calculus
of variations to the Lagrange problem (P5) formulated in chapter 4 and,
using the fact that P5 is ¥-equivalent to P,, derive the (Pontryagin)

Furthermore, by using the fact that P is

maximum principle for P 5

e
P-equivalent to Pl’ we ultimately obtain the maximum principle for Pl'

This result (i,g., a proof of the maximum principle for the original optimal
control problem) should not be interpreted as an implication that the material
of chapters 2 through 4 is no more than preliminary to the material of

chapter 5. On the contrary, chapter 5 is included in this paper because it
contains an immediate application of the results of chapters 2, 3, 4, and 6 and
because the material of this chapter serves to indicate the basic foundations

required for a study of the correspondences between the calculus of variations

and optimal control theory.

5.1 Necessary Conditions From the Calculus of Variations

In chapter V ofA(l8), Pontryagin et al. consider a Lagrange problem and,
in effect, by transforming the Lagrange problem into an optimal control
problem they obtain the Welerstrass condition and multiplier rule from the
maximum principle. Thus, their discussion is parallel, but opposite in
direction, to the initial developments of this chapter (namely, to the
derivation of the maximum principle for Pg, starting from P5)' This
paragraph has been included solely for the convenience of the reader who, if
he consults (18), should be careful to observe that (in our notation) the

Lagrange problem of Pontryagin et al. is slightly more general than the



55

Lagrange problem considered herein. Specifically, they permit the functions

90, 81, ooy 8n to be dependent not only on Yyr wevs ¥ but also on
Ype1s oo yn+p Furthermore, GO may be explicitly dependent on
}}l) *0 &n’

For a long time the standard reference on the classical problem of
Lagrange has been part II of (1). A more modern introduction to the (classical)
theory is contained in (20), which, incidentally, contains a discussion
(pages 316-323) similar in content to the discussion of (18), chapter V.
Also (9) contains a great deal of information on the Lagrange problem and
its relation to the theory of optimal control.l However, all of these references,
and in addition, many others (with the notable exception of (22)), discuss the
Lagrange problem with the assumption that the trajectories are at least
piecewise smooth, rather than absolutely continuous. Furthermore, in order
to elevate the Welerstrass condition, multiplier rule and transversality
conditions to the same level of generality as the maximum principle these
necessary conditions must be established without any assumptions regarding
normglity. For these two reasons, we turn to the work of E. J. McShane and
specifically to (15), page 24, for a statement of the previously mentioned
necessary conditions. DNote, however, that this reference deals with necessary
conditions for a parametric problem and consequently, since P2 is nonparametric,

the results must be transformed to results for a nonparametric problem.

lIn contrast to the transformation method outlined herein, (9) uses the
method of "slack variables" - usually attributed to Valentine (21) - to
bridge the gap between optimal control theory and the calculus of variations.



36

With these introductory remarks disposed of, let us turn to a discussion

of P and the equivalent Lagrange problem. Since a discussion of the

2

structure of the target set S would only serve to confuse the fundamental

results, we let S be a single point, say b € Rn, with a % b = (bl,.,., bn)’

Therefore, in the traditional spirit of the calculus of variations the terminal

condition %, free and y(tl)e {b }XRP would be written as o(tl, y(tl)) =0

where the function o = (cl, cees cn) is defined by oi(t, y) = y; - b; for

i=1,2, ..., n. (i.g., g = 0 defines the closed terminal manifold

[to, ®) x {b} xR’ in (t, y)- space.) For convenience, we state the Lagrange

problem considered i1n this chapter.

Lagrange Problem: For fixed initial conditions (a, to)e Rn+l and terminal

conditions o = 0 find a (first) time t, > t, and function y = (¥y, <+« yh+p)
1

in Y5 such that

(1) Y<tO) = (8, «ve) 8 0, «.v) 0)

(2) G(tl) Y(tl)) =0
(3) o(y(t), 7(t)) = 0 a.e.

and such that y minimizes

t

r() = [ oglr(n), 9(m) ar
0

with respect to all other such functions (i.g., with respect to all admissible

arcs) .

lRecall our earlier (chapter 4) convention regarding Y5.
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In chapter 4 we remarked that the functions © 6 and o are Cl

O)
on Rn+p ><Rn+P. The following lemma is an immediate consequence of the
definitions of these functions and is merely an expression of the fact
that 9 1is independent of Ype1? =02 yn+p and Vs wees V-

Lemma 5.1: For all (y, ¥)e€ R™P xg™P the following is true:

" Bmi - aei . Bmi . Bei Y 1=1,2, ..., n
ayj Byj ’ BSfJ. 13’ Syj J=1,2, ..., n
(2) afDi = - aei = Qs a@i = - aei 1,2, ..., n
SYJ- 5yj ’ 5yj 53?; J=ontl, ..., ntp

5@1 Bmi
(3) rank 5 /=0 where 5 denotes the n x(n+p) matrix

o, J J
with elements el
Y5
In anticipation of what will be needed later let us define, for arbitrary
n+l n+
vectors 0\ = (xo, vees xn)e R, &= (gl, ceey §n+p)€ R P and
(v, ¥)e RYP <P he (Lagrange) function
n
h(y, ¥, N\)= - 7\090(3’: y) +2 7\i Cpi(Y: ¥)s
i=]1
the (Weierstrass) excess function
n+p
. . . \Oh .
E(yj g é) 7\) = h(;Y) £, 7\) - h(Y} B 7\) - (gl = yl)gi— (y; Y 7\))
i
i=1

and the (Pontryagin) function

G(YJ y) -}\> =

H-

I -
i
>J
O
<
AT
Cf/.
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We note that the functions h and G are Cl on Rn+p XRn+p ><Rn+l.

From the calculus of variations we obtain the following necessary
conditions for y +to be a solution to the Lagrange problem. We designate
it as theorem 5.1 and accept it as being proved. It is from this theorem
and P, will be derived,

2 1

Theorem 5.1: If y 1s a minimal admissible arc with terminal time ¢

that the maximum principle for both P

1

for the Lagrange problem (i.e., (y; .)€ ° , then there exists a nonzero,

3)
*
ceey A n) on [to, t

1)
*
O)

x*o < 0 a constant, such that for almost all ¢t €[to, tl]:

bounded, measurable function x* = (2 with

1

% t
(1) g-;}i— (v(t), ¥(t), A (%)) =fto g% (v(s), 3(s), V' (s)) ds + ¢,

for constants Ci vhere i =1, 2, ..., ntp,
n+p
. * . oh . *
() Br(e), 50, (D) =) 33 (8) S (8, 9, A ()
=1

t
=L/; g_i (y(s), v(s), X*(S)) ds + CO
0

for a constant CO, and

(3) Ely(t), 7(t), &, 2*(t)) 20 for all vectors &

satisfying o(y(t), &) = O.

In addition at the terminal time t = tl it is necessary that there

exist constants v cees Vo with (xo, Vis oo vn) % 0 such that

l)
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Theorem 5.1 is stated in full generality and, as yet, makes no use of
the particular form h, B and o assume herein. At this time we choose
to make use of this special form and, in the spirit of optimal control theory,
interpret theorem 5.1 in terms of the function G defined previously. Before
doing this, let us, for convenience, state the following lemms which is merely

an algebraic consequence of lemma 5.1 and the relation

n
n(y, ¥, N =Z NIy - Gy, ¥, ).
i=]1
Lemma 5.2: For all y, y € RYP  and NE Rn+l
oG
oh oh oG
(1) = - y ~=— =\, 3 =— =0 i=1,2, ..., n
Byi 6yi Byi i 5?;
oh _ oG _ oh _ oG .
(2) Fy;*-gyi——o,gyr;——gg i=mntl, ..., ntp
n+p n+p
N . dn _ Z 3G
(3) h - ZZJ Vi 550 7 C G + vy 552
i=1 . i=n+l
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+
and for arbltrary § ¢ RTP

(4) E<y: ¥, &, N) = G(.YJ ¥ A) - G(Y} £, N\)

n+p

‘ .\ OC .
+>’ (5‘1 - yi) 5"3,._ (yJ Y ISE
i=n+l -

If y 1s a minimal admissable arc for the Lagrange problem, then there

*

exists a constant 2. < 0 and a function 2\¥ = (X*O, s

%
(¢ M '--J\n)

satisfying the conditions of theorem 5.1. Since X* is bounded, measurable
and oa is continuous we have, from lemma 3.1, that oc (y(t), y(t), N°(t))
gy“j? H 2 g'i'l‘ b b

is integrable and hence the functions %i’ i=1,2, ..., n given by

t
2@ = - [T 58 ), 3e), @) s ey

0
; . . oG . *
are absolutely continuous and satisfy %i(t) = -5 (y(t), v(t), A (%))
i
a.e. on [to, tl]. From (1) of theorem 5.1 and (1) of lemma 5.2 it follows
that %, = \*i a.e. and thus, letting X, = x*o we have that 2\, <0, the

function N = (Ag, Ny, ..-»\,) 1s nonzero and absolutely continuous, and

(e = - g_;z_ (y(t), 7(t), A(t)) a.e.

1 N
1

Turning to the terminal conditions of theorem 5.1 we find that, since

oh i _on _ o
3t ~ ot 9dy, 6&5 -

€
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for i=1,2, ..., n and J=ntl, ..., n+p

C are zero. Therefore from (2) of

the constants C and Cn+l’ v O

0
lemma 5.2 and (1) of theorem 5.1, plus that fact that » = 2\% a.e., we

obtain

0 = %g;— (y(t), y(t), A(t))

1

a.e, for i = n+l, ..., ntp,

From (2) of theorem 5.1 and (3) of lemma 5.2 we have that
0 = a(y(t), y(t), N°(t))

a.e. on [ty, t;] and from (4) of lemma 5.2 we have G(y(t), 7(t), \*(t))>
G(y(t), &, 2\™(t)) a.e. for all vectors & such that o(y(t), £) = 0. Since

A=

a.e. these two relations are also true for almost all t e[to, tl]
with % replaced by . In other words we have established the following.

Corollary 5.1: If (y; tl)e QOB then there exists a nonzero, absolutely

continuous function X\ = (xo, ISEREEEY Xn), with 2\, < 0 a constant, such
that a.e. on [to, tl}:
. oG .
(1) A (6) = - 5= (y(t), 3(t), A(¢)) i=1,2, ..., n
i
oG , _ = el
P (Y(t): y(t), AM(t)) =0 i =ntl, ..., ntp
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(@]

(2)r aly(t), y(t), a{(t))

(5)' G(Y(t)) y(t); 7\(t)) 2 G(Y(t)) €, W(t)>
for all vectors ¢ satisfying o(y(t), &) = O.

5.2 Necessary Conditions for P2

Turning to problem P2 (see chapter 4) let us define, for arbitrary

vectors (x, z, )€ Rn><RP>KRn+l, the (Pontryagin) hamiltonian

n

H(x, 2z, )\) =211 xifi(x, z).
i=0
From the properties of fi we have immediately that H is Cl on

R™ xRP XRn+l and furthermore that the following lemma is true.

Lemma 5.3: If the vectors (y, y)e RYP X g™P ana (x, z)e R™ xRP

satisfy vy =% for 1=1,2, ..., n and Ypei = % for i =1, 2,
s . . n+l
then (independent of Ypap? o0 Y and ¥y, ..., yn) for 2\€ R

n+p

(l) ﬁ(xy z, N) = &y, ¥, N)

(2> gg— (X: z, \) = %E_ (Y: 7> N) i=1, 2, »
%5 Iy
oH _ oG . -
(5) 5;; (X’ z, \) = 5;;:; (v, ¥, N) i=1, 2, » D

From lemma 5.3, the fact that P

5.1, we obtaln the maximum principle for P2.

.0

Lo

0

b

3 is WV¥-equivalent to P2, and corollary
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Corollary 5.2  (Maximum principle for PE): If z:[t tl} -7 =R’

O}

is an optimal control with corresponding trajectory x and terminal time

tl > tO then there exists a nonzero, absolutely continuous function

o= (\O, \l’ ey xn) with xO < 0O a constant, such that a.e. on [to, tl]:
o~ a-ﬁ .
(l) )\i(t) = - 5% (X(t); Z(t)) 7\(t)) i=1,2, ..., n
i
F . o
Szo (X(t),’ Z(t); 7\<t)) =0 i=1,2, ..., p
i

(2)" H(x(t), z(t), AM(t)) =0

(3)" ﬁ(x(t); Z<t): At)) Eﬁ(x(t)y £, A (%))

for all vectors ¢ = (gl, ceey gp)e 7.

Proof: If (z; x, tl)e QOE then from theorem 4.1 there exists (y,tl)e Q°

5

(t) for

with xi(t) = yi(t) for i=1,2, ..., n and zi(t) = Vpei

i=1,2, ..., p. Since (y, tl)e Q°, there exists a constant Aq <0 and

>

functions \i satisfying corollary 5.1. Thus from lemma 5.3 relations (1)"

and (2)" follow and furthermore if E = (Ei, veey En+p) satisfies o(y(t), &) = 0O

then the vector ¢ = (En+l’ cey En+p)€ Z satisfies H(x(t), &, (%))

= G(y(t), €, A\(t)) which established (3)".

N —

We remark that the relation g%— = 0 follows from (3)" and the fact
i
- . 1
that H 1s C on 7= RP, Therefore, in this sense, the multiplier rule -

when applied to this specific problem (P5> - contains redundant information.

We turn to problem P. and define, for arbitrary vectors (x, u, )€ Rn><V><Rn+l

1
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the hamiltonian H(x, u, A\) = L> N gi(x, u). Again H is C on
A
i=0

<R and we have the following lemma (recall X = R© and UCVCRY).

Lemma 5.4: If the vectors (x, z)e XxZ and (%, u)e X xU satisfy

¥(z) = u then for N\ € g

(1) H(x, u, A\) = ﬁ(x, Z, \)

(2) régl (%, u, A) = 5‘—‘521 (x5, 2, \)
m
- ov, =
N9 o
(3) /. 3§7 (x, u, 2) 35% (z) = agt (x,2,A), 1i=1,2, ..., p.
1 '

If (u; x, tl)e Q; then from theorem 3.4 there exists (z; x, ty)e Qg with

Yoz = u i.e., ¥(z(t)) = u(t) for all ¢ e[to, t Applying corollary 5.2 and

l]'

lemma 5.4 we obtain, as in the proof of corollary 5.2, the maximum principle for Pl'

5.5 The Pontryagin Maximum Principle

Corollary 5.3 (Maximum principle for Pl): If (u; x, tl)e 07, then
there exists a nonzero, absolutely continuous function 7\ = (%O, ISERRERY Rn),
with g < 0 a constant, such that a.e. on [to, tl]:

(1) X (t) = - %E— (x(t), u(t), a(t)) i=1,2, ..., n
i X,
(@) Hx(t), ult), A(t)) =0

(3)' H(x(t), ult), N(t)) = H=x(t), &, A\ (t))

for 21l vectors & = (gl, cee gm)e U.
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A few observations should be made concerning corollary 5.3. First,

we choose not to include the relation

m

e 3¥, (2(%))
Z_' a—“ )) u(t>; 7\(13)) =z 0 a.e.
=1 9 i

for i =1, 2, ..., p since, as indicated previously, it can be obtained

from condition (3)''' and the definition of H. Second, we see that

corollary 5.5 can be considered proved only for those particular control regions
U for which the existence of a function V¥ satisfying the strengthened basic
assumption of chapter 4 is guaranteed. This existence question is considered
in the next chapter. Third, the proof of corollary 5.3 (or 5.2) rests on

the assumption that g (or f£) is C' on VU (or 7). This is a slightly
stronger assumption than the one made by Pontryagin et al. who only require
continuity on U (or Z). Finally, as discussed on pages 101-104 of (18),

one can show that the function

a(t) = supy H(x(t), & A(t))

is equal to zero for all t e[tO, tl] and not just almost everywhere,

Since a proof of the multiplier role, Weierstrass condition and trans-
versality conditions, without any assumptions regarding normality and with
the trajectories absolutely continuous, appears to be approximately as
difficult as a proof of the maximum principle and since the proof of the
maximum principle outlined in this chapter depends ultimately on Filippov's

lemma and the existence of a function V satisfying the strengthened basic
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assumptions, we do not advocate corollary 5.3 as an "easy" proof of the
maximum principle for an arbitrary U. Rather, we present corollary 5.3
as what it really is - one of (hopefully) many straightforward applications
of the idea of W-equivalence (or what is the same thing, the idea of a

change of variables in the control space).
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6. THE EXISTENCE OF

In this the sixth chapter, we turn to the question of the existence of
a function V¥ satisfying various forms of what has been called (in chapters 3,
L, and 5) the basic assumption. To facilitate later reference, let us
gystematically list these various forms, in order of decreasing generality,
as follows.

Basic Assumption: Corresponding to a nonempty, compact set U(:Rm

(6-1) - there exists a positive integer p, a nonempty set 7¢ RY  and
a continuous function V:Z —»U with V¥(Z) = U;

(6-2) - in addition to (6-1) there exists a compact set 2Z*CZ such
that V(z*) = U;

(6-3) - in addition to (6-2), z = R’ and (hence) U is connected,

(6-4) - in addition to (6-3), ¥ is C- on Z.

Recall that, from theorem 3.4, if (6-2) is satisfied then P, is

Jeequivalent to P Furthermore, if (6-3) is satisfied then P, has an

K
unconstrained control region. Finally, if (6-4) is satisfied then P, (with
some additional assumptions concerning the function g) is - in the sense of
chapter 5 - a Lagrange problem.

Rather than attack the question of the existence of V¥ in full generality,
let us agree hereafter to consider control regions U which are compact and
convex. It will soon be clear that what we lose in generality we will more

than gain in practicality. Specifically, when U 1s compact and convex we

will obtain not only existence theorems but also explicit representations for V.
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Moreover, in most cases the form that ¥ assumes will be of sufficient
simplicity to guarantee that the transformation fi(x, z) = gi(x, V¥(z)) is
not only possible but also practical. At the end of this chapter we will
(briefly) consider a particular type of compact, connected (but not, in
general, convex) control region; namely we will let U be the continuous

image of a compact, convex set.

6.1 U is a Convex Body

Definition 6.1: For a positive integer p and real numbers a, b

with a <b, let [a, b]® = [a, b] x...x[a, b] denote a p-dimensional

cube while Bp(p, z) = {x € RP:]]x-z[| < p} denotesl the p-dimensional

ball of radius p > 0O centered at z ¢ Rp.

If U(:Rm is compact and convex and if in addition U contains an
interior point then dimension U =m (11) and U is said to be-a convex
body. If U is a convex body, we will show that there exists a
function V¥ satisfying (6-3). Moreover, when U is a polyhedron
we will construct a rather simple function V¥ satisfying (6-4).

Finally, when U 1is a parallelipiped we will construct a very simple
function ¥  satisfying (6-4) with p = m. As a first step in

this direction consider the following lemms which may be found (for example)
in (3).

Lemma 6.1: If UCR" is a convex body then U 1is homeomorphic to
Bm(l, 0). Consequently, any two convex bodies in RT are homeomorphic.

From lemma 6.1 it follows that if U 1is a convex body in R" and z*

is any other convex body in R then, with p=m and 2 = Z*, there exists

P
| < 1
‘Recall that for x e RP, ||x‘k=[21) (Xi)2 ] 2 .
i=1
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a function V¥ satisfying (6-2) i.e., ¥:Z - U 1is the homeomorphism whose
existence is guaranteed by lemma 6.1. Therefore, we remark in passing

that, in the sense of theorem 3.4, when UCR™ is a convex body, there is

no loss of generality in assuming that U is B™(1, 0), or [-1, 11", or
any other convex body in K" for that matter. Unfortunately, unless the
homeomorphism V:Z —» U is ¢t (which in general it is not), we can not use
lemma 6.1 to construct a function V satisfying (6-4). However, the
following is: true.

Theorem 6.1: If UCR" is a convex body then there exists a function
T

lm

W:Rp —» U, with m=p and Z* = [ -5, 5

¥ is continuous and V(RT) = ¥(z¥) = U.

which satisfies (6-3) i.e,

Proof: Since both U and [-1, l]m’ are convex bodies in Rm, from
lemma 6.1 there exists a homeomorphism o:[-1, 1]™ - U. Consider the function

7= (Yqs eees Vp)t R® >R defined by

7i(z) = sin z; i=1,2, ..., m

where z = (2, ..., z ). Clearly y(RM) = y([- g ,~g 1™ = -1, 11® and

since 7 is continuous the theorem follows with V¥ = @Qo7y.

Certainly, in the proof of theorem 6.1, if the function o were Cl
then V¥ would be also and hence V¥ would satisfy (6-4). Also notice the
fact that V¥ is one-to-one is not used in the proof. These two observations
serve to indicate the course we will pursue; namely, we will relax the one-to-one
requirement on V¥ in order to obtain the condition V¥ € Cl. At the same time

by assuming that U is a polyhedron we will be able to obtain an explicit

representation for V.
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6.2 U 1is a Polyhedron

Definition 6.2: For m>1 and r >1 let w for i=20, 1, ..., r

be r+l1 vectors in Rm. The set given by

T

I‘v —
no.y = 1 > -
{ ueR :u ZiJ How'y My Z O,le Hy 1 }

i=0 i=0

is said to be a polyhedron (or a convex polytope). As defined herein, a

polyhedron is the convex hull of 1ts vertices {wcﬁ veey W } (3). 1If

r = m and if the set {Wl - wo, cees wo- WC)} is linearly independent

then the polyhedron is said to be a simplex. (See (10), chapter 5.)

Clearly a polyhedron is compact and convex although, in general, it
may or may not be a convex body. Geometrically a simplex is a compact line
segment for m = 1, a compact triangular region for m = 2, a compact solid
tetrahedron for m = 3, and so forth, and is, for all m, a convex body.

Lemma 6.2: TIf UCR" is a polyhedron defined by r+l vertices
{ wO, vy W } then there exists a Cl function @:Rr - R™ with @(Br(l,o)) = U.

Proof: By hypothesis we have

r r
i '\"
= i, _Y 1 > =
U~—{11€ R .u-—/__J Hawo, By = o, 24 My 1 }
i=0 i=0




so that -

Therefore, U may be written equivalently as

r r

m._ 0 | i 0 >\ <
{ u€ER:u=w + j{J ui(w -w), wy 2 O’ZLJ wy S1 ¢,
i=1 i=1

Consider @:Rr - R" defined by

where 1z = (zl, cees zr). Certainly o 1is ¢t and o(B (1, 0)) cu.
T

Moreover, if u € U then u has a representation as wo +>_J ui(wl - wo)
i=]1

r
with u, 20 and 211 My < 1. Defining z = (Zl’ cees Zr) as 2y = J;Ji
=1

e

for 1=1,2, ..., T then z € B (1, 0) and o(z) = u i.e., (B (1, 0))>U.
Notice that ¢ 1s definitely not one-to-one. In fact, even when U
is a simplex, we can only conclude that @(zl) = @(22) implies (zli)2 = (zgi)g.
This follows from the linear independence of the set {wl - wo, couy W~ WO }.
However, of course, when U is a simplex then ¢ 1is one-to-one on (for
example) the set BY(1, 0)N iz e Rz, 20,1=1,2, ..., m b
Theorem 6.2: If UCR' 1is a polyhedron defined by the r+1 vertices

{wo, cens wr } then there exists a Cl function w:Rr ~>U‘(ifg., p=r)
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with 7% = B"(1, 0) such that V(R') = ¥(2¥) = U i.e., ¥ satisfied (6-U).

Such a function is given by

O sin® ”z” e o
- B e
ZH
V¥(0) = wO z =0
where 1z = (zl, ceey Zr)‘

Proof: Let ¢ denote the function given by lemma 6.2 and consider

V:Rr >R defined by

,on
sin 5 (lzll
7(z) = z z # 0
Izl
y(0) = 0 z =0
for z = (Zl’ cees Zr>' Since Ily(z)ll = sin % lzll £ 1 it follows that

7(R")c B"(1, 0). Wow, if w € B'(1, 0) with |ujl # O define z = (205 «oer 2,)

as
1
5 Il
zZ = _7; u
[Tull
. o=1 . . 10 1t .
where sin is the inverse of sgin: [- 553 ] »[-1, 1]. Since
lzll = % ein~t lull we have Jlzll £ 1 and
sin g(% sin™t Hull> <2 sin™t qull >
7 Z) = - u = u ,
( 1 T Hut

2 . =
= sin u
— fhull
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If Jjull =0 then u=0 and 7(0) = 0 by definition. Therefore,

7(B"(1, 0)) >B (1, 0) and since 7(R") >7(B (1, 0)) this proves that

T r r
7(R) =7(B (1, 0)) = B (1, 0).
To prove that 7 1is Cl on R it is sufficient to prove that
sin g Izl 1 sin gAJE
——~&% is C . However, the function afs) = —=— (s # 0),
Hz VE
b)
a(0) = g , a'(0) = (% ) is ¢’ on R and B is ¢ on RY where
2
B(z) = lzll © = z% +oe.. zi
sin g lhzt 1 r
which implies aof(z) = ——=——— is (€~ on R . Therefore, the
1zt

function ¥V = o7 is ¢l on R® and satisfies V(R = w(B (1, 0)) = U
which proves the theorem.

Remark 6.1: If UCR" is a simplex then theorem 6.2 is true with
p=r=mn i.e., W:R" 5 U and ¥(R™) = U.

Remark 6.2: The proof of theorem 6.2 is certainly true for any

¢l function 7:R" —R° which satisfies 7(&") = 7(2z*) = B(1, 0) where
* _ T sin % Hz
7 C R is compact. Whereas theorem 6.2 uses the function 7(z) = ————
Hzil

we could have chosen, for example, the following function which 1s suggested

by a consideration of r-dimensional spherical coordinates ((l}L page 4o7).

i

* . 2
71(2) sin” z, cos z,

* - .
75 z) = sin z) sin z, cos z

5

(z) = sin® z, sin z, ... sin z

1 2 n-1 ©°% %p

* L2 , .
7r(z) = sin” z, sin 2, ... sinz 4 sinz/
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r-1

Ty [ n, ). Certainly o= (7;; seey ¥

* . 1
773 ) de C

with 2% = [- %) is

and 1t can be established with an inductive argument that

) = B'(1, 0). Hence V* = ¢o7* also satisfies (6-4).

6.3 U is a Parallelipiped

Definition 6.3: For m =1 let W for 1 = 1,2, ..., m be m

linearly independent vectors in R" and let WO € Rm be arbitrary. The set

m
{u € Rm:u = wO + 211 uiwl, 0 < Hy <1 } is said to be a (m-dimensional)

parallelipiped. =1

It follows from the definition that a parallelipiped is compact and
convex. Furthermore, a parallelipiped is the convex hull of its o™ vertices
and hence is a polyhedron. Certainly then, theorem 6.2 applies to the case

where UCRm is a parallelipiped and thus there exists a function

onto

V:R® 280y satisfying (6-L4) with p = 2%

- 1. However, we will show

(theorem 6.3) that when U is a parallelipiped there exists a function

¥ BP —20L0 satisfying (6-4) with p = m and that V¥ assumes a much

"simpler" form than the form of the function given by theorem 6.2.

Lemma 6.3: If UCR" is a parallelopiped then there exists a C:L

function ©:R" —R" such that o([-1, 1]™) = U. In addition V¥ is one-to-one.

Proof: Denote the mtl vectors which define U by wo, wl, ceey W

Define qJ:Rm SRS as

0]

o(z) = w + (zi + 1w

nof =
gl

i=1

where z = (zl, ey zm). Certainly ¢ 1is Cl and if =z €[-1, l]m then
z, + 1
o<

S5 <1 which implies o([-1, l]m)CZU. Furthermore, if wuw € U then



25

m
0 i < .
u= v + bW where C < by S 1. Define =z = (Zl, ceey Z
i=1

2, =21, -1 then @(z) =u which establishes ([-1, 11 > u.

The fact that ¢ 1s one-to-one follows from the linear independence

of the set {wl, cee, wm'}. For, if @(zl) = @(22) then

m m

N i \ , 2 1
Z(zi+1)w _2 (2, + )
i i=1

i=1

which becomes m

>J(zl. - z2.) W= 0
i i

i=1

and thus zli = zgi for 1 =1, 2, ..., m.

Theorem 6.§: If UY:Rm is a parallelipiped defined by the mtl vectors
0
W, wl, ceey o in R" then there exists a Cl function ¥:R- — R

i.e., ¥V satisfies (5-4)). Such a function is given by
=tz

m
V¥(z) = _—_ % 211 (sin z, + 1) w
i
i=1
where z = (2, ..., zm).

Proof: Let ¢ denote the function given by lemms 6.3 and, as in the

proof of theorem 6.1, define 7:R" —» R' by

7.(z) = sin zy i=1,2, ..., m.

Certainly Vv = 9oy 1is C and since 7(®Y) = 7(z%) = [-1, 1]™ the theorem

follows.
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For m=1 and real number a., b, with a, <b; for 1=1, 2,
i’ i i
we will designate the set [al, bl] XuoaX [am, bm] as an (m-dimensional)

right parallelipiped. Frequently, in the literature on optimal control

theory (especially in the literature dealing with linear problems) it is a
control region of this type which is considered. This is due both to the
mathematical simplicity of such a set and to its physical relevance, i.e., a
right parallelipiped corresponds physically to a control system in which the
m controllers are free to move independently (of each other) within a range
determined by the upper and lower bounds ay s bi‘

From definition 6.3 it is easy to see that a right parallelipiped is,

in fact, a parallelipiped. Specifically, it i1s the parallelipiped defined

by the vectors

woo= (al, ceey am)

1

W= (bl -ay, 0y, +vs, O, 0)
m

W =3

= (0, 0, +..; 0, b - am).

Therefore in the particular case of a right parallelipiped the function

given by lemma 6.3 reduces to

bi - ai bi + ai
@i(z) = \— z; + — ) i=1,2, ..., m

and as a corollary to theorem 6.3 we obtain the following.
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Corollary 6.1: If U= [al, b Xa X [am, bmJ then the

.1

function V:R" — R© given by

bi - ey bi + &y
Wi(z) =\ sin zg + (-———75——) i=1,2, ..., n
satisfies (6-4) with 7 = [~ % s g 1™ and p = m.

As mentioned previously, frequently in optimal control theory one
assumes that the control region is a right parallelipiped. Using the
function ¢ defined by lemma 6.3 and letting V¥ = @lz where
7 = 7% = [-1, 1]™ we find that V¥ satisfies (6-2) with p = m. This
result, in conjunction with theorem 3.4, justifies the frequently made
remark that when UCR" 1is a right parallelipiped one can assume without
loss of generality that U = [-1, l]m. In fact, as lemma 6.3 shows, this
remark is true in the more general case where U is any parallelipiped.

Furthermore, when P, 1is linear in the controls i.e., when

1

m

g (x, u) = ai(x) +z>_J bij(x)uj i=1,2, ..., n
i=1
then fi(x, z) = gi(x, ¥(z)) 1is linear in the controls z. That is,
the function @ given by lemma 6.3 transforms a linear problem Pl
with U a parallelipiped into a linear problem P2 with 7 = 2% = [-1, 1]m.
We remark in passing that there is certainly nothing unique about the

function V¥ in theorem 6.3. For example, the function defined by

n 1~ Zi
wo + <l + z; e 2 > 'wl

ol

i=1
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satisfies theorem 6.3 with 7% = [-1, l]m. In practice, the form of
Pl may help to determine which V¥ function should be used.

In (17), there is a discussion of a derivation of the Bang-Bang
principle for a linear, time-optimal system with U = [-1, 1]™. This
discussion is in the spirit of chapter 5 and uses the function given
by corollary 6.1 and the (implicit) knowledge that the vertices of U
correspond to the points 2z € Z where z; = t 5 for 1i=1,2, ..., m.
This indicates that, at least in principle, the function given by
theorem 6.2 could be used to derive the Bang-Bang principle for a
linear time-optimal system with U a polyhedron. For this (and other)
reasons it is of interest to determine those points of Z¥* = Br(l, 0)

which correspond to the vertices of U i.e., to determine those points

z € 7% such that V¥(z) = W' for some i = 0, 1, 2, ..., r. Inspection
of the function V¥ given by theorem 6.2 reveals that ¥(0) = w°© and
that for z= = (1, O, vvv, 0), vve, 25 = (0, O, ..., O, 1) we have

w(zi) = wi, i=1,2, ..., r. In fact, ¥(z) = w0 for all =z € Z with
wzlt = 0, 2, 4, ... and W(Ej') = wi where 1 = 1,2, ..., r and

7l = a2t for o= +1, +3, +5, ... . Thus, ¥ maps B (1, 0) and

successive shells of thickness 2 onto U.

6.4 U is the Continuous Image of a Convex Body
In the paragraph preceding definition 6.1 we mentioned the case
where U 1s the continuous image of a compact convex set. The following

result is a consequence of theorems 6.1, 6.2, and 6.3 and
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summarizes conditions sufficient to guarantee that there exist an
onto function ¥:R® - U which satisfies (6-3) or (6-4).

Theorem 6.4: Tet VCRY be a convex body and let ®:V — R
be continuous. Letting U = @(V), there exists an onto function
W:Rq - U satisfying (6-3). If V is a polyhedron with v+l vertices
and if @ 1is Cl on an open set containing V then there exists an
onto function V:R' —U satisfying (6-4). Finally, if V is a
parallelipiped and if ¢ is Cl on an open set contalning V then
there exists an onto function V:RT —U satisfying (6-4).

Proof: For each of the three sets VC RY considered there exists
an onto function \V*:Rp -V with p=gq9, p=r and p =q satisfying
(6-3), (6-4), and (6-4) respectively, for an appropriate set z¥C RF,

The theorem follows directly using VvV = ¢ ow*.
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7. SUMMARY AND CONCLUSIONS

Based upon several natural equivalence relations defined on a
large class of optimization problems an equivalence concept, called
Y.equivalence, was developed. In terms of this concept the fundamental

question became: given an optimization problem, say P under what

l)
assumptions is it possible to construct a second optimization problem,
say P2, which is W-equivalent (hence equivalent) to Pl' In very
general terms a complete answer to this question was provided by
corollary 2.2.

If an optimal control problem.(Pl) has UCR. as its (compact)
control region and if a second optimal control problem (P2) has ZC:RP

as its control region, where P is obtained by transforming Pl using

2
the onto function V:Z — U, then we may apply corollary 2.2. Thus, we
obtained that, if ¥ maps the set of admissible controls for P2

(point-by-point) onto the set of admissible controls for P,, then P,

is @Lequivalent to P From theorems 3.1 and 3.2 it was possilble to

1
rephrase this condition as theorem 3.35: namely, 1f for each bounded

measurable function u:[to, tl] — U there exists a bounded measurable
function z:[to, tl] -7 such that u = Voz then P2 is Y-equivalent

to P Filippov's lemma guarantees the existence of such a function

B
z 1if there exists a compact set Z'C Z such that W(Z) = ¥(z2¥) = U
and thus this lemma reduced the question of W-equivalence to a
question of the existence of a function V¥ satisfying various forms of

what was called the basic assumption. These various forms were

conveniently summarized at the beginning of Chapter 6.
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In chapter 6 we showed that if U is a convex body in Rm
then an appropriate V¥ exists and in fact Pl is equilvalent to an

optimal control problem P in which the control functions are

2

unconstrained (i.e., Z = Rp). Furthermore, when U 1is a polyhedron

we may choose V¥ to be Cl and thus Pl becomes equivalent to a
Lagrange problem. As an application of this result we were able to
derive the Pontryagin maximum principle using only the standard necessary
conditions of the calculus of variations.

While these results constitute an answer to the fundamental question
posed earlier, at least in the setting of optimal control and calculus of
variation problems with absolutely continuous trajectories, they suggest
several further areas of research, a few of which will be mentioned
briefly.

If, instead of bounded measurable control functions, one considers
controls which are (for example) plecewise continuous then it appears that
all of what has been done herein could be redone in this case provided that
a 'piecewise continuous analogue'of Filippov's lemms is available. This
would certainly be of interest since the vast majority of the traditional
calculus of variations research and much of the optimal control research
has been concerned with the piecewise continuous case.

As indicated by the proof of the maximum principle (chapter 5) there
is reason to believe that the method discussed herein will provide a very

effective means of relating other known results in the two areas. This

should at least be of interest to those people with backgrounds in the
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calculus of variations who (by desire or by necessity) are doing research in
optimal control theory.

It is a fact that today most of the existing algorithms for solving
optimal control problems are based on the explicit or implicit assumption
that the control region is open. Thereforé, by transforming Pl with U
compact, into P2 with Z = Rp,’we may immediately apply the algofithm.to
P2, rather than attempting to modify. the algorithms to treat Pl directly.
Since 1t is also a fact:that virtually all optimal control problems must

be solved numerically, this last research area may prove to be of immediate

importance.
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In chapter 2 we were concerned with global minimization and consequently

with the concept of global weak W-equivalence. Throughout this appendix we

will be concerned with local minimization and specifically we will attempt

to obtailn conditions sufficlent to guarantee that P is locally weakly

2

V.equivalent to Pl where P2 is defined as in the sentence prior to

lemma 2.1. As might be expected, these conditions are obtained only by
greatly strengthening the properties of 9?:92 —an.
Using the notation and terminology of chapter 2, let us, in addition

to the assumptions of chapter 2, assume that Y, and Y2 are topological

1
spaces and that Tl and T2 are the relative topologles for QlC Yl and
Q2C YE' Furthermore, assume that ﬂ?:Qe —aﬂl is continuous. Let us agree
to the terminology that a neighborhood NOL of a € Ql (NB of B e 92)
is an open set N €T, (NB € T2) containing o (B).
Definition 9.1: If for ale Ql (BO € 92) there exists Eloe'gl (NBO €T

5)

(0] < Oy <
such that Fl(a ) < Fi(a) for all a € No (FE(B ) S FE(B) for all B € NBO)

then o° (Bo)is saild to be a local optimal element.

We let Q:CL)OC 0, and ngc 0, denote the set of all local optimal

elements and we observe that QOCIQOO QO<2QOO

4 C 80y, 85080, With a slight abuse of

notation we will refer to the problems of finding local optimal elements for

Ql and 02 as Pl and P2.

Lemma 9.1: If o € Q and ¥(B) = a then o € 0°°

and B € 1

1 2

implies B € ng.
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Proof: - By hypothesis there exists Ncn € Tl in which o is locally

optimal. Since ¥ is continuous there exists NB € T, such that ‘If(NB)C N, .

Consider B* € N, and let o¥ = P(B¥*)c N,. Since Fl(a*) > Fl(q) we have

B

F,(B¥) 2 Fy(B) and thus B ¢ ng.

00 00 00
. D i D
Lemma §.2: ‘If(ﬂe) Ql iff ‘II(QE ) Ql

Proof: The lemma is trivally true if Q%° = @. Therefore assume

1
Qio # ¢ and consider o’ € Qio. I ¥ (92) DQio then by hypothesis there
exists p° € @, such that U(g°%) = «° and from lemma 9.1, g° € ng i.e.,
\II(QZO) DSz:(EO. The converse 1s certainly true since SZQDQZO.

Lemmas 9:1 and 9.2 and thelr proofs are vertual repetitions of lemmas 2.1
and 2.2 and are true because of the continuity of ¥. The analogue of
lemma 2.3%, however, requires more of ¥ than just continuity. With this in
mind we define the following terminology.

Definition 9.2: The continuous function \II:QE — . 1s locally open

1

(relative to Slgo) if for each BO € ng there exists a NBO € T,, in which
8° is optimal, which satisfies ¥ (NBO)G T, -

Observe that if W. is locally open then it is only necessary for some

neighborhood ‘of BO € ng, in which BO is optimal, that its image be open
in Tl' Certainly if ¥  is open then ¥ is locally open.
(oTo] 00
. c . .

Lemma 9.3: \I’(Q2 ) Ql iff ¥  is locally open.

Proof:  If ng = ¢ the lemma is vacuously true. Consider BO € ng
and suppose \II(QZO) c Qio. By hypothesis o’ = (% e Qio and thus there
exists Nao € Tl in which «° is optimal. Since ¥ 1is continuous,

-1 0 -1 0 . i -1
L5 (Nao)e T, and B~ € (NCL ). Letting Ngo = v (Nao) we have

\IJ(NBO) = N,o which is open in Y, . Consider B ¢ NBO then a =W¥(B)e N o



67

so that F (a) 2 F

3 (a°) which implies F,(B) 2 F,(8°). Thus p° is optimal

1
in NBO which implies ¥ is locally open.
Conversely suppose ¥ is locally open and consider BO € ng. By

hypothesis there exists N_o € T, such that ‘I’(NBo)e T. and such that

8 ) 1
8° is optimal in Neo. Let «® = ¥(g°) and define No = T(Ngpo).
Consider a € Ncco then there exists B ¢ NBO such that ‘I’(B) = q and
since FE(B) > FQ(B ) we have Fl(on) 2> F2(0L ). Thus o € ;" and hence
00 00
v(9,7) c .

As the analogue of definition 2.2 we have the following.

Definition 9.3%: P2 is sald to be locally weakly ‘I’-equivalent to Pl

00
1 -
Theorem 9.1: P

iff \P(ng) = Q

is locally weakly W-equivalent to P, iff ¥ is locally

2 1

a°°,

1
Proof: If \Ir(ngo) = Q;O

open and \II(QE) )

then from lemma 9.3 ¥ ig locally open and from

lemma 9.2, ‘IJ(QE) DQiO. Conversely if ¥ 1is locally open then from lemma 9.3
\Ir(fzgo) Daio while 1f  ¥(Q,) :mio then lemma 9.2 implies W (ng) mio.

While theorem 9.1 gives a necessary and sufficient characterization of
. . © 00
local weak W-equivalence, it assumes a priori a knowledge of 02 . Thus
the following corollary is a far more practical result.

Corollary 9.1: If ¥ is (continuous and) open with \I!(Qg) = @, then

P, is locally weakly W.equivalent to P, .

2 1
Proof: If W is open then it 1s locally open and \If(Qe) = Ql implies
¥ (92) DQEO thus theorem 9.1 applies.

Just as corollary 2.2 served as the basis for the study of global

Y=equivalence in optimal control theory, corollary 9.1 would play the same
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role in a study of local W¥-equivalence. Certainly, however, the construc-

tion of a function ¥ mapping the space of admissible control function 92

into the space of admissible control functions Ql which is at the same

time onto, continuous and open appears to be, at best, a difficult job.

In closing let us apply the results of chapter 2 and this appendix to
the problem of minimizing a function of n-variables. Specifically, let

v,= R" and Y, = RP. From corollary 2.2 we obtain the following.

Corollary 9.2: Corresponding to ¢ % QlC R® and Fl:Ql — R suppose

there exists a positive integer p, a nonempty set Qg(IRp and a function

U:0, >0 with ¥(Q,) = Q. In this case ¥(Q3) = @7 where a7, 0

1 1° 1 1 2
denote the set of global minimal elements of Fl:Ql - R and F2 = FlO‘@EQQ — R.

Notice that W need not be continuous. An obvious application of

corollary 9.2 is to construct 92'= RP  and thus to replace the problem of

minimizing Fl(x) subject to the constraint x € Ql by the problem of

minimizing Fé subject to no constraints. If one is concerned with local

minima then corollary 9.1 applies and one obtains the following.

Corollary 9.3: 1In addition to the hypotheses of corollary 9.2 if W

00 00 00
where § )

is open and continuous then ﬂ?(ﬂgo) = 1 » 5  demote the

set of local minimal elements.



